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Abstract 

For over a decade, drug-induced liver injury (DILI) has posed significant drawbacks in 

the synthesis and development of drugs and remains a consequential concern. With 

finite success within the existing preclinical models, DILI is one of the main causes of 

drug withdrawal or termination from the market. Particularly, this withdrawal occurs 

during the late stages of drug development (Kullak-Ublick, 2017).  Since DILI is 

difficult to diagnose and treat, it has become an obstacle in the drug production market 

that in turn affects clinicians, pharmaceutical companies, and consumers. We propose a 

method for learning features of DILI-positive drugs based on the graphical relationships 

and patterns they possess within a network of biological databases. We also train various 

statistical and machine learning models on these learned features in order to classify the 

drugs as DILI-positive or negative. Our methods include Random Forest, Neural 

networks, and logistic regression classification. We utilize labeled DILI-positive and 

DILI-negative datasets, which were developed by the FDA and the National center for 

toxicological research, as well as additional literature datasets (Thakkar, 2020) in order 

to validate our results and assess our featurization and model accuracy.  

 

Keywords: liver toxicity, hepatoxic drug analysis, drug classification, FDA clinical trials, 

graph databases, data processing, graph embeddings, classification models, machine-learning 

featurization, model comparison. 
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1. Introduction 

An important first step in identifying drug toxicity is to identify patterns in known liver 

toxic compounds. Current datasets are designed based only on FDA drug-labeling information, 

case registry-based approaches, or clinical evidence-based approaches (Thakkar, 2020). We hope 

to introduce additional datasets which allow us to capture patterns based on graphical relationships 

between compounds and known diseases, safety proteins, and genes. We begin by introducing the 

sources of the expanded datasets. 

 

1.1 UCSF SPOKE 

Provided by the University of California San Francisco, SPOKE (Scalable Precision 

Medicine Oriented Knowledge Engine) is a biological database of databases, offering researchers 

the ability to explore complex interconnected pathways. The graph-theoretic database harnesses 

the potential to enable discoveries and its diverse database continues to expand with the perpetual 

efforts to incorporate more information.  

The SPOKE database is referred to as a heterogeneous network since it contains different 

nodes and edges that can each represent differing data and their corresponding connections. 

Through node-arc graphs, we can best observe the complex biological relationships that are present 

in diseases, treatments, and health. In this case, the “nodes” make up important human factors such 

as proteins, genes, anatomies, compounds, cell type, etc. Likewise, the “arc” or “edges” between 

the node pairs are representative of the known connections and relationships that exist between 

them. These node-arc relationships allow scientists to observe paths and follow a series of edges 

that may connect to nodes not previously known to have any relationship with one another.  
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Over two million compounds are mapped into SPOKE using “Smile Strings,” which are a 

way to describe a compound two-dimensionally. Smile strings are then matched using a Tanimoto 

similarity (or Jaccard) coefficient T, as a similarity measure to compare the chemical structure 

utilizing fingerprints. Further, the similarity, or proportion of the features shared among two 

compounds, is divided by their union to calculate the Tanimoto similarity. If the Tanimoto 

similarity result is greater than 0.85 then the two compounds or structures are considered similar. 

This cutoff is important because it helps us to create our eventual DILI/no-DILI labels to train the 

models. 

 

1.2 Graphical Representation: Acetaminophen Example 

As our tool to visualize the SPOKE data, Neo4j stems far beyond the traditional table 

structure found in relational databases. It is a querying language similar to SQL, however, it 

contains flexible schemas for data storage and retrieval while representing the spatial relationships 

we see in Node-arc graphs. These observable node-edge relationships are of high importance when 

applying statistical analysis to the SPOKE data. 

We can access the data stored in SPOKE through Neo4J queries, which produce a graphical 

result that allows us to observe a multitude of relationships. These queries can help us understand 

what is available within SPOKE and what edge connections are present.  

The graphical output seen in figure 1 was obtained from a Neo4J query that was run for 

the compound “Acetaminophen,” (C8H9NO2). Acetaminophen is one of Tylenol’s active 

ingredients. This compound is one of 2,093,045 compounds that comprise the SPOKE Database. 

Within the graphical representation, we can visualize the genes, proteins, side effects, and diseases, 

respectively as nodes, that are connected to, or have a relationship with our sampled compound. 
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FIGURE 1.  

A Graphical Neo4J Output of For the Acetaminophen  

 

Note: The compound “Acetaminophen” is located at the center of the graph (Orange), 

and a small portion of the neighbor nodes are filtered out for visualization purposes and 

represents one observation of a compound subgraph.                                          

The full graph contains more than twenty types of nodes, with over two million total 

observations. Each of these nodes has its properties, which range from a single numeric property 

to five or more properties of mixed types including descriptions, categories, sources, and more. 

Fifty-seven different edge types connect each of the node types, and over thirty million individual 

relationships will, at times, possess edge properties as well. We only consider a subset of nodes 

and edges in order to develop our baseline metrics. 



GRAPH BASED FEATURIZATION METHODS              6 

   
 

In Figure 2, we present a graphical representation of a small portion of the SPOKE 

Database. Displayed next to each node, is their respective quantity count. We can observe the 

stature of this database by observing the compound quantity at 2,093,045 unique compounds. With 

this, these queries pose a computational rigor with increased run times due to the size of the data. 

FIGURE 2.   

A Visual Summary of Nodes and Edges Used for Modeling  

 

Note: There are over two million compounds in the SPOKE database. This is a 

quantifying visualization of the node proportions within the continually updating 

dataset. 

2. Methods 

For an in-depth and inclusive analysis, we implement two approaches for model training, 

prediction, and inference. In the first approach, we create categorical features out of the node and 

edge relationships that are found within the graphs. We then perform statistical model fitting and 

prediction and compute the accuracy. We also explore a more recently developed graphical 

algorithm, the Node2Vec algorithm (Grover, 2022). In our efforts, we aim to measure the 
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computational rigor and model accuracies of each model. We compare a standard featurization and 

the Node2Vec algorithm to observe which approach offers the preferred computational efficacy 

and accuracy that is needed to screen compounds. 

2.1 Baseline Featurization 

Combined study data gave rise to the binary labels of either 0 or 1: the drug compounds 

found in the SPOKE database either do or do not injure the liver (Thakkar, 2020). This is 

characterized as 1 for ‘will cause liver injury’ or 0 for ‘will not cause liver injury (Figure 3). This 

characterization is useful to identify if certain compounds within the featurized data have a 

likelihood of causing injury to the liver. Synthesizing new drugs can be facilitated by properly 

screening these compounds so that we know which compounds are labeled as “safe to use.” This 

safety is determined through tests on either live animals or assays. 

 

FIGURE 3. Using Binary Response Variables to Classify DILI Compounds for 

Featurization 

  

Note: This visual provides a summary of the binary classification of the response, 

drug induced liver injury compounds, that were performed on our data from SPOKE. 

We focused on only a small subset of data since the primary goal was to set up a baseline. 

We aim to build a model for general clustering or classification in subsequent studies. However, 
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for the purpose of this study, we use a small subset of labeled data from the total two million nodes 

and edges.  

To better observe and compare the compounds from the SPOKE database, we formulate a 

tabularized feature matrix (Figure 4). Here we can observe the Max Phase, Proportion liver 

anatomy, Proportion safety proteins, alongside binary responses for DILI, (Liver) Diseases, and 

(Liver) Side Effect. 

The compound data was incorporated into the SPOKE database from ChemBL, an open 

large-scale bioactivity database where data is regularly extracted from medicinal chemistry 

literature (Gaulton et al., 2017). The compounds possess unique ChemBL IDs, which allow 

researchers the ability to track and identify the bioactive molecules with drug-like properties and 

their chemical composition.  

The Max Phase column, provided by ChemBL and the U.S. National Library of Medicine, 

indicates the maximum phase of clinical trials that a certain compound is on. A max phase of 0 

indicates that the compound is currently in preclinical trials, while a max phase ranging from 1-3 

indicates current clinical trials. The highest max phase a compound can achieve is a 4, which 

indicates that the compound has been approved as safe to treat diseases. 

The proportion of anatomies that are connected to the compound through the node and 

edge relationships can be seen in the Proportion liver anatomy column. As seen on the fractional 

depiction in the first row, Acetaminophen possesses a total of ninety-two anatomy nodes on the 

subgraph, two of which are liver-related anatomies. Meanwhile, the Proportion safety proteins 

column indicates the proportion of compound experimental binding to proteins that may indicate 

potential drug safety issues or toxic effects. 
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TABLE 1. Tabular representation of the feature matrix for the first six rows. 

Compound Response 

Max 

Phase 

Proportion liver 

anatomy 

Proportion safety 

proteins 

(Liver) 

Diseases 

(Liver)  

Side Effect  

CHEMBL112 

(Acetaminophen)  

1 4 

0.0217391304 

(2/92) 

0 (0/32) 1 1 

DB00322 1 4 0.02173913 0 1 0 

DB00768 1 4 0.021978022 0.1 0 0 

DB01136 1 4 0.02173913 0.0390625 0 1 

CHEMBL1406871 0 0 0.025316456 0 0 0 

CHEMBL3800326 0 0 0.022727273 0.033333333 0 0 

Note: A random sample of six rows from our feature matrix are tabularized above to 

provide a visual the variables used after pre-processing. The first compound is 

Acetaminophen (CHEMBL112), as shown in Figure 1. 

We create binary vectors from our categorical variables by applying a binary featurization for 

the two features: “Side effect” and “Diseases.” The feature "Side Effect" is one-hot encoded as 1 

for liver-related side effects, and 0 for non-liver-related side effects. The feature "Diseases" is 

one-hot encoded as 1 for liver-related disease association and 0 for non-liver-related disease 

association (Figure 5). With the features defined, we may apply any existing machine learning or 

statistical models, which we describe later in this section as part of the evaluation. 
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FIGURE 4. Visualizing the conducted binary featurization of spoke data. 

  

Note: Similar to figure 3, we visually depict the conversion of SPOKE data to a 

categorical (binary) form that allows the model to interpret both the Side Effects and 

Diseases.  

2.2 Node2Vec Featurization 

We also use a graphical algorithm to create a feature representation with an embedding 

algorithm known as Node2Vec. Node2Vec is a node algorithmic framework for learning 

continuous feature representations in latent space. This algorithm computes a continuous vector 

representation of a node based on random walks in the graph. The multiple samples, or ‘walks,’ 

are taken beginning with the Compound node and traversing, or ‘stepping,’ through the SideEffect, 

Disease, and Gene node types in our graph. The sampling is limited to these node types due to the 

memory size limitations, but future subgraph filtering could solve this. These ‘random walk’ 

samples are then treated as ‘words in a document’ in the sense that traditional Word2Vec 

embedding algorithms can be applied to the contents of each document (Mikolov, 2022). In this 
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analogy, the ‘words’ are the contents of the nodes, and the overall corpus is the combined 

collection of samples. The idea is that similar compounds have similar ‘documents’, and the 

embedding hopefully captures these similarities. Other document modeling procedures can also 

be considered in the future. 

The end result is an n-dimensional, numeric representation of each compound. These n-

dimensional vectors then become the feature inputs for existing machine learning or statistical 

models. In our example, we use a 20-dimensional feature representation that scales to the amount 

of ‘walks’ performed in the random walk. This parameter could also be optimized using various 

statistical procedures, but for the purposes of this study, we are only establishing a baseline. 

2.3 Evaluation 

In order to evaluate the performance of our algorithms, we must utilize clearly labeled and 

well-studied liver toxicity data. To begin, we randomly sampled compounds and their subgraphs 

from SPOKE and ensured that the DILI and No-DILI response is balanced. As our train/test split, 

we used eighty percent of the data to train the models and the other twenty percent to test them. 

To obtain a well-performing and accurate model we use multiple simple classification 

models to establish a baseline for featurization, training, and testing. We create a logistic regression 

model, a neural network/multi-layer perceptron, and a random forest classifier.  

As a classification algorithm, we apply logistic regression to model the probability that a 

certain class or event exists. In our case, we are interested in learning the probability that a drug 

induces liver injury or the probability that it does not induce liver injury. We can use this model to 

predict a binary outcome, such as zeros or ones, given a set of independent variables. This model 

can predict the probability of occurrence of an event by fitting data to a logit function.  
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 For comparison, we also use a neural network classification algorithm commonly used in 

machine learning, the multi-layer perceptron (MLPClassifier). For our study, our neural networks 

consist of one input layer, a single hidden layer, and binary outputs. 

The third model we implement is a random forest classifier that takes the average of many 

classification decision trees from random sampling for a refined model. For our study, 1000 trees 

were obtained for sampling.  

3. Results 

We compare both the one-hot-encoding baseline featurization method and Node2Vec 

featurization methods in terms of computational efficiency and prediction accuracy.   

3.1 Computational Efficiency 

 For the one-hot-encoding featurization process, sampling the subgraph and encoding when 

a relationship does or does not exist is the most exhaustive step in the featurization. Depending on 

how many individual compounds we have, and how many outgoing relationships they share, then 

checking for a keyword or character match, the computation time increases exponentially with 

each observation. 

 On the other hand, for our Node2Vec algorithm, since we have the database stored in 

memory and only care about the sampling of each node, the only value that is important in this 

process is the node's unique identification number. Once the node IDs are sampled, we can then 

map those IDs back later once the embedding is obtained. As a result, once embeddings are 

created for all the nodes in the graph, the remaining computation time for any random sample is 

limited to model fitting and predicting. Additionally, the complexity of Node2Vec does increase 

depending on how many steps and how many walks from each compound we decide to use. The 
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more random walk samples we have, the longer the embedding process, but the fitting and 

prediction process is less affected by compound sample size. 

 The featurization method increases exponentially as more observations are added. 

Meanwhile, the second and more efficient method remains at a constant performance under ten 

minutes (Figure 6). By comparison, it would take the featurization method more than fifty 

minutes of CPU time to compute while the Node2Vec method would only utilize three minutes, 

thus proving a greater computational time efficiency per observation count.  

FIGURE 5. Comparing computational efficiency by observation compute time 

 

Note: The model comparison denotes the rigorous amount of computational time that 

the featurization takes in comparison to the much more efficient Node2Vec method. 

3.2 Prediction Accuracy 

We tabularize the prediction accuracies for our train test split amongst two different sample 

sizes. For visualization purposes, we display a smaller sample to compare to the larger sample of 

1000 compounds. For most models, we can observe a notable difference as more samples are 
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incorporated into the model, the smaller the prediction accuracy. Our greatest observed accuracy 

was for the random forest classifier using the Node2Vec featurization which holds an 80% 

accuracy. The lowest accuracy resulted from the neural network model using the baseline 

featurization (Table 1). 

TABLE 2. Prediction accuracies for the data at various sample sizes.  

  Accuracy 

Sample Size Model Approach 1  

(Baseline 

Featurization) 

Approach 2 

(Node2Vec) 

 

 

500 

Random Forest 67.3% 80% 

Neural Network 54.3% 77% 

Logistic Regression 55.6% 76% 

 

 

1000 

Random Forest 66.8% 75% 

Neural Network 61.3% 76.5% 

Logistic Regression 56.5% 70.5% 

Note: The table depicts the recorded prediction accuracy for a 80%-20% train/test split. 

The percentage represents the percent correctly predicted using the corresponding model. 

The confusion matrix in Figures 7 and 8, shows the false positive vs true positive for the 

best performing classifier models using our baseline featurization approach and Node2Vec 

embeddings, respectively. True positive and true negative is relatively high, but not perfect. The 

results of the models are analyzed within a Confusion matrix, which portrays a tabular 

representation of actual versus predicted values. This helps us to find the accuracy of the model 

and avoid overfitting by analyzing the percentages associated with its quadrants.   
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In the same figures, we also conducted ROC Curve Analysis for the baseline featurization 

and Node2Vec embeddings. For this metric, we look for the curve with the largest AUC (Area 

Under Curve). An ideal curve would showcase the true positive rate being high and the false 

positive rate being low, leading to a curve that closely hugs the upper left corner. Therefore, we 

want to choose a model whose curve is closest to the parameters of a perfect classifier.  

FIGURE 6. Visual results for the model fitted to the baseline featurization 

 

 

Note: The confusion matrix (left) and ROC curve analysis (Right) for the test set after fitting the 

random forest classifier on the baseline featurization method. 

3.3 Summary of Featurization results 

After tabularizing our featurization results (Table1), we observe that within the baseline 

featurization approach (column: Approach 1), for both sample sizes of compounds, the Random 
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Forest method yields better results. We determine the random forest classifier has the highest 

accuracy in the baseline featurization method. The ROC curve analysis indicates that the random 

forest classifier model using the baseline featurization outperforms the other models used at an 

AUC of 76.1% (Figure 7). 

FIGURE 7. Visual results for the model fitted to the Node2Vec embedding 

  

Note: The confusion matrix (left) and ROC curve analysis (Right) for the test set after fitting the 

random forest classifier on the Node2vec featurized data. 

3.4 Summary of Node2Vec results 

Within the same table, using a sample size of only 500 compounds, the Node2Vec column 

(Approach 2) identifies the random forest as the best model at an 80% prediction accuracy (Table 

1). For a sample size of 1000, the prediction accuracy of the Node2vec embedding decreases to 
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76% for the neural network model. The ROC curve for the random forest model using the 

Node2Vec embedding featurization is calculated to have an AUC of 89% (Figure 8). 

4. Conclusion 

From our obtained results we state that the approach using the Node2Vec algorithm is both 

computationally faster and more accurate when using a subset of labeled liver toxicity data. It is 

important to note that both featurization methods decrease in prediction accuracy as the sample 

sizes, or the number of compounds included in our model, increases.  

As we increase the number of compounds, we also increase their interconnected neighbor 

nodes. These neighbors might contain information that does not necessarily help our model and 

ends up hindering our computational efficiency. For example, if we included a compound that is 

unrelated to liver toxicity, it may have node neighbors that do indicate safety proteins or liver and 

hepatic side effects. This ultimately confuses the model or forces it to be categorized as DILI or 

no-DILI when it is potentially neutral. In this instance, a multi-class model would be required but 

is beyond the scope of this study. 

In subsequent studies, we aim to explore how we can filter, or assign a preference to certain 

nodes during the Node2Vec random walk-in order to capture better embeddings.  For instance, we 

want the random walk to traverse neighbor nodes and are ‘hep’ or ‘liver’ related with higher 

priority. We’d also like to better optimize the embedding parameters, such as how many random 

walks per compound, and how many steps for each walk. The number of embedding dimensions 

should also be considered. Ultimately, intending to establish a baseline, our approaches performed 

well. Any additional feature representations can be compared to this baseline to determine if the 

prediction accuracy and efficiency improve. 
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